

联合国 Food and A 粮食及 Organizati 农业组织 United N

Food and Agriculture Organization of the United Nations

Organisation des Nations Продовольст Unies pour l'alimentation сельскохозяйственн et l'agriculture Объединенны

Продовольственная и сельскохозяйственная организация Объединенных Наций АІ

Organización de las Naciones Unidas para la Alimentación y la Agricultura منظمة الأغذية والزراعة للأمم المتحدة

Leveraging the power of Big Data at FAO

Applications in Fisheries and Aquaculture

Pierre Maudoux Consultant FAO's Fishery Statistics and Information Branch (FIAS) pierre.maudoux@fao.org

Contents

- 1. Introduction
 - FAO presentation
 - Statistics at FAO
 - Sustainable development goals (SDGs)
- 2. Applications of Big Data for Fisheries and Aquaculture at FAO
 - Why Big Data: what do we have to gain?
 - A review of applications
 - Limitations
- 3. Conclusion

FAO

- **194 Member Countries**, two associate members and one member Organization
- Headquarters in Rome, Italy
- Presence in more than 130 countries

 FAO supports governments and their stakeholders in areas of development, in the design of adequate policies, programmes and legal frameworks to promote food security and nutrition

Our priorities

1. Eradicate hunger and malnutrition 2. Make agriculture, forestry and fisheries more productive and sustainable

3. Reduce rural poverty

4. Enable inclusive and efficient agricultural and food systems

5. Increase the resilience of livelihoods from disasters

Importance of statistics at FAO

Role of FAO:

- Collect, analyze, interpret and disseminate food & agriculture statistics
- Develop and implement methodologies, standards to help generate sound data
- Support for member countries: collection, dissemination, and uptake of data

Big Data in Fisheries and Aquaculture

Advantages – Limitations – Scope – Perspectives

FAO's Fisheries and Aquaculture Statistics

- Fisheries and Aquaculture as important source of food, nutrition, income and livelihoods
 - Marine and inland ecosystems and their resources under growing threat
 - Sustainability only possible with cautious and effective management
 - FAO is the only global source of fisheries and aquaculture statistics
- Our main databases:
 - Global capture and aquaculture production
 - Global trade of fisheries and aquaculture commodities
 - Consumption of Fish and Fishery Products

• ...

Why Big Data in Fisheries and Aquaculture?

- Source of new data
- Alternative source to validate, complement, enhance existing datasets

Application 1 - species distribution

$\overset{\bullet}{\bigtriangleup}$	Goal	predicting future distribution of marine species
	Data sources	species occurrence data, marine environmental parameters (e.g. depth, temperature, salinity), habitat preferences
	Analysis type	ML niche modelling to compute future range under climate change scenarios

Application 1 - species distribution

Results

- Silver-cheeked toadfish (Lagocephalus sceleratus)
- From Red Sea to Mediterranean Sea
- Without intervention, spread will continue and impact on fisheries will worsen

Limitations

Uncertainty of predictions unclear

Probability of species occurrence. 1950 -2050

Application 2 – AIS for fisheries monitoring

Å	Goal	identify fishing effort location to understand impacts on environment and resources; improve fleet data
	Data sources	global A utomatic Identification S ystem (AIS) data (60k vessels in 2017)
	Analysis type	machine learning to identify fishing gear based on movement

Application 2 – AIS for fisheries monitoring Results example of output, west Africa (2017)

(Fishing hours/km2)

Application 2 – AIS for fisheries monitoring

Limitations

AIS coverage number of vessels using AIS limited (mostly larger boats, richer countries, distant water fleet)

AIS receptionconstrained by presence of
satellites/antennae, heavy vessel traffic areas

AIS algorithm some fishing techniques are less predictable and therefore harder to identify than others (e.g. gillnets, pole and line)

Application 3 – detection of aquaculture sites

detection and mapping of aquaculture sites for Goal improved information insights and production capacity analysis, spatial planning and potential disaster assessments Data sources satellite imagery (Sentinel II) **Analysis type** image classification algorithms Limitations imagery resolution (the better the more expensive), type of aquaculture, complex production calculation Result example in South-East China

Application 4 – SmartForms mobile app

Å	Goal	decentralized collection of important but sparse data (e.g. bycatch, recreational catch, marine litter)
	Data sources	customizable forms designed to collect standardized data
R	Analysis type	visualization of key data collection statistics
7	Limitations	control over accuracy of data collection
Ó	Result	currently in beta version, release within months

Application 4 – SmartForms mobile app

\equiv Choose form

🗉 Catch of the day

C

Monitoring recreational fisheries in the Caribbean (Billfish project)

I SoFiRe

A test data collection App for Somali Fisheries Reporting

ByCatch-ABNJDeepSea

ABNJ Deep-seas Project

←	ByCatch-ABNJDeepSea
Date	
2019-	10-07
	Use current location
Latitude	3
41,90	
Longitu 12,50	de

← ByCatch-ABNJDeepSea
By-catch ABNJ Deep-seas Project
Observer name Aureliano Gentile
Vessel name Popeye
IMO Ship Identification Number 5758908543
Trip Number 546fg
Trip ID Yfg467i
Tow number 2
Sharks
Sharks Species Gulper shark

Data Overview

Data by Form Data by Workspace

Implementation in FAO Fisheries and Aquaculture

- Strategy on the use of Big Data under development
- Range of experimental projects
- Promising applications but no routine use of Big Data yet

Conclusion

- Very promising technology, but limitations exist
- Does not replace data collection by national statistical offices, but can be a very good complement
- Technology constantly improves, creating more and more opportunities (e.g. AIS use, satellite imagery resolution, machine learning algorithms)
- The future of fisheries and aquaculture will include these technologies and FAO is getting prepared to leverage them fully

Questions and inquiries: <u>pierre.maudoux@fao.org</u> <u>fish-statistics-inquiries@fao.org</u> Contributed to the contents of this presentation: Marc Taconet, Stefania Vannuccini, Kiran Viparti, Jennifer Gee, Aureliano Gentile, Anton Ellenbroek

Annex – List of relevant publications and websites

- Advances in geographic information systems and remote sensing for fisheries and aquaculture
 - <u>http://www.fao.org/3/i3254e/i3254e.pdf</u>
- E-agriculture in Action: Big Data for Agriculture
 - <u>http://www.fao.org/e-agriculture/news/fao-itu-e-agriculture-action-big-data-agriculture</u>
- Forecasting the ongoing invasion of Lagocephalus sceleratus in the Mediterranean Sea
 - <u>https://www.sciencedirect.com/science/article/pii/S0304380018300164</u>
- Upcoming: Atlas of Fishing Activity using AIS data

Annex – List of relevant publications and websites

- FAO's Fisheries and Aquaculture statistics website: http://www.fao.org/fishery/statistics/en
- Global Fishing Watch website: https://globalfishingwatch.org/
- SmartForms: A mobile App platform to collect and review fishery and observer data:

http://www.fao.org/fi/static-

media/MeetingDocuments/cwp/ReferenceHarmonization/2018/S3 3
.pdf